PF-MPC: Particle filter-model predictive control

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

D . Stahl , J . Hauth PF - MPC : Particle Filter - Model Predictive Control

In this article, a new model predictive control approach to nonlinear stochastic systems will be presented. The new approach is based on particle filters, which are usually used for estimating states or parameters. Here, two particle filters will be combined, the first one giving an estimate for the actual state based on the actual output of the system; the second one gives an estimate of a con...

متن کامل

Particle Model Predictive Control: Tractable Stochastic Nonlinear Output-Feedback MPC

We combine conditional state density construction with an extension of the Scenario Approach for stochastic Model Predictive Control to nonlinear systems to yield a novel particle-based formulation of stochastic nonlinear output-feedback Model Predictive Control. Conditional densities given noisy measurement data are propagated via the Particle Filter as an approximate implementation of the Bay...

متن کامل

Model Predictive Control with Integral Action: A simple MPC algorithm

A simple Model Predictive Control (MPC) algorithm of velocity (incremental) form is presented. The proposed MPC controller is insensitive to slowly varying system and measurement trends and therefore has integral action. The presented algorithm is illustrated by both simulations and practical experiments on a quadruple tank MIMO process.

متن کامل

Embedded Model Predictive Control (MPC) using a FPGA

Model Predictive Control (MPC) is increasingly being proposed for application to miniaturized devices, fast and/or embedded systems. A major obstacle to this is its computation time requirement. Continuing our previous studies of implementing constrained MPC on Field Programmable Gate Arrays (FPGA), this paper begins to exploit the possibilities of parallel computation, with the aim of speeding...

متن کامل

Extremum Seeking-based Iterative Learning Model Predictive Control (ESILC-MPC)

In this paper, we study a tracking control problem for linear time-invariant systems, with model parametric uncertainties, under input and states constraints. We apply the idea of modular design introduced in [1], to solve this problem in the model predictive control (MPC) framework. We propose to design an MPC with input-to-state stability (ISS) guarantee, and complement it with an extremum se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Systems & Control Letters

سال: 2011

ISSN: 0167-6911

DOI: 10.1016/j.sysconle.2011.05.001